So, how do games actually work?

Article scanné dans le magazine N64 n°07 (Octobre 1997)
Sujet de l'article : Site

Now there's a question. Luckily, N64 Magazine isn't afraid of hard work, wand we set about
discovering just what makes N64 games tick.

Scans réalisés par les membres du site Nintendo64EVER, usage exclusivement
destiné aux autres membres du site. Toute reproduction, partielle ou complete,
ainsi que la diffusion de ce fichier est interdite. Les magazines originaux sont la
propriété intellectuelle exclusive de leurs éditeurs respectifs, les scans
regroupés dans ce fichier ont un but uniquement documentatif et informatif, aucune
exploitation commerciale ne peut en étre faite.

Nintendo64EVER | So, how do games actually work? (Article scanné dans N64 n°07 (Octobre 1997)) - page 1

:
z

e [NEA....,

Nintendo64EVER | So, how do games actually work? (Article scanné dans N64 n°07 (Octobre 1997)) - page 2

$O, HOW DO

WORK?

Now there's a question. Luckily, N64 Magazine isn't afraid of hard

GAMES ACTUALLY

work, and we set about discovering just what makes N64 games tick.

hen you impatiently stuff a
cartridge into the slot on the
] top of your Nintendo 64 and

gape at the marvels of the
latest generation of video games as they
explode onto your telly screen, have you
ever wondered, even briefly, how it all got
in there? All that sound, all those colours,
all those pretty pictures moving around
really fast, all those levels, all that, er,
‘game’. Obviously it's got something to do
with computers, hasn't it?

Much has been made over the last few
manths, not least by this fine magazine,
about the wonders of the N6, It's a Silicon
Graphics machine in a little box, they say.
The CPU is a 64-bit RISC processor running
at 93.75 MHz with another 64-bit RISC
processor (the Reality Co-Processar)
running at 62.5 MHz just to handle the
graphics. It can "do’ anti-aliasing. it can
‘da’ mip-mapping. It can 'do" astonishingly
clever things with digital sound.

And all that complicated electronics
inside your saucy-looking conscle must do
something with some sort of program
stored in the cartridge, right? OF course it
does, you say. Any fool knows that. Tch,

Well, yes, all right, but what sort of
program is it? How did it get to be there?
How was it 'developed'? What sort of
arcane electronic jiggery-pokery was
performed upon the ideas of the game's
designers to turn their frantic gibberings

by Tim Norris

into a playable game? {“Yeah, It'll be
great, man, there'll be these, you know,
like alien killer death monsters on these
huge hybrid motorbike-hovercraft things
and they'll, you know, burst out from
behind these weird concrete trees, except
that they'll not be trees but...”) What
makes the program contained on the chips
inside your cartridge any different from the
programs we used to tap into the Amstrad
CPCs in Dixons in the 1980s to print rude
messages across the screen? Eh? EH?

It weuld be foolish to begin a piece like
this with questions like that if it were not
our intention to try to answer them. Or
some of them, anyway. Well, when we say
‘answer'.... let's not get carried away. It's 4
complicated subject and all we can promise
is that we'll do our best to shed some light
on some of the more interesting aspects of
game development. We've spoken to one
of the teams at DMA Design (the team in
question is working on Silicon Valley) and
they've let us in on a few of their technical
secrets which we shall share with you
Can't say fairer than that

So get yourself a comforting warm
drink and a packet of your favourite
biscuits, and settle yourself in the comfiest
of chairs as the mysteries are laid bare
before you. The material covered here will
NOT appear in the exam,
but there may be a test GO!
later in the week GO!

V9

HUOM ATIVNLIV SIWYD P9N MOH ““"SILVYVDILLSIANI

October 1937 Q’

Nintendo64EVER | So, how do games actually work? (Article scanné dans N64 n°07 (Octobre 1997)) - page 3

R
g
>
£

N6

e M&4 is capable of many visual marvels.
It can handle a sufficiently large number
of graphical objects and perform upon
them such an abundance of effects as to
be capable of creating extremely realistic virtual
worlds in which we can play. But although it can

process the images, it can't create them. It's just a

carefully constructed lump of plastic metal and
silicon, after all. What does it know about go-kart-
driving dinosaurs or italian plumbers? Nothing,
that's what. Someone or, rather, some many, have
to draw the pictures and work cut what should
happen to them as the game progresses. But
how, ete...?

If the M64 is just a scaled down Silicon Graphics
machirne in a living room-frendly box (the new 5G
workstations wouldn't look out of place in a
modern home, it's true, but they're still a bit
pricey) it would make sense to
design the graphics on a Silicon

Graphics machine. So they do.

For the 3D polygon
modelling. the DMA designers use 5G
machines running a program called Alias. It is, they say, the
sort of high-end 30 software that the film industry has
been using for years to create the special effects seen in
movies like Jurassic Park and The Mask. Using this kit they
can design and animate all the characters and objects in
the game and play with them to their hearts’ content.

B e

Painting pictures

Any games console, the N64 included, spends the
majority of its time constructing the graphics you
see on your TV screen. So what goes on in between
the programmers deciding there'll be a green
elephant in their game, and a green elephant
actually appearing in your living room?

Sooner or later they'll want to see what they look like
on an Ned, though, and again that's where the link with
SG comes in handy. The Silicon Graphics machines are all
equipped with N64 emulators so that the graphics can be
quickly converted to a format the N&4 understands, loaded
up and seen on-screen exactly as they'd appear on your
console. If the designers aren’t happy with the results they
can be re-jigged straight away - they don't have to wait
for early test versions of the game to see if the graphics
work, they just check everything as they go.

Even in these days of hyper-realistic 3D, there's still
room for good old fashioned computerised painting.
Manipulating images pixel by pixel to create bit-mapped
images has a place in the world of the N&4 just as it did
on the Spectrum, and more conventional software like
Adobe Photoshop (which Wil uses here on NédMagazine
to draw his strange pictures) and Dpaint is pressed into
service at DMA to create bit-mapped graphics for
textures and the like

Finally, the developers have their own game editing
software which has a built-in poalygon editor “for
messing with landscapes” (see the section headed
‘Building worlds'),

When everything has been modefled, drawn, shaped
and heartity mucked about with, the images are converted
into the corect graphical formats for the game, given
names that make sense to the programmers {so the game
can call them at the right moment) and, eventually, linked
to the program code. And that's it.

wo [NEAT..,

Nintendo64EVER | So, how do games actually work? (Article scanné dans N64 n°07 (Octobre 1997)) - page 4

Some of those
special graphics
features

In the mistaken belief that it'll make us look
clever, we've already bandied about phrases like
‘mip-mapping’ and 'anti-aliasing’. They sound
mysterious and impressive, and help to make it
appear that the N&4 is capable of the 20th
century equivalent of magic. Actually, it's all a bit
more prosaic than you might imagine.

Anti-aliasing

Let's take, as an example, anti-aliasing. When
blocks of contrasting colours everlap on a digital
image, the jagged edges of the shapes can be
disappointingly obvious. It's partly to do with the

U oy

simple fact that the image is just made of a bunch
of square-edged pixels, but there’s a certain
amount of strangeness where the frequencies of
the analogue signals that the television or monitor
uses interfere with each other as well. *Aliasing’,
it's called.

The results aren't the sort of thing we modem
users expect, so something has to be done, and 1o
get rid of the aliasing they use, er, anti-aliasing,
The edges of the shapes are blurred using a
mathematical filter as the image is drawn on the
screen and the results are much more pleasingly
realistic than untreated images. Edges seem to
blend and blur in a much more natural way,

Computer paint packages have been able to
do this sort of thing for years, but the N64 is able
to anti-alias images as it displays them, so moving
bit-maps and polygons never suffer from unsightly

jagged edges.
Mip-map gl ng

t's that? If you've been
reading since issue 1 you might remember that

And ﬂ'III:I mapping, w
mip stands for ‘multi in partem’, which ks your
actual Latin and probably means something like

“in many parts” but don’t quote us. (Latin O level
was a bong time ago - so long, in fact, that it was
an and O level not a GCSE.) The full name of the

ﬁ'FMmur!wu':mmfn on & bexture, the mone
blocky /v becomes,

technigue is ‘tri-fnear mip map interpolation’, and
it's used to change the level of detail on distant
textures, again to keep things looking more real
(o7 less unreal, anyway).

Ask any Sesame Street viewer and they'll tell
you that as objects get further away they appear
to get smaller,
Scaling images is no
prablem for a
maodern computer,
and It can be done
very quickly, but
you start to get
prablems when the
textures are using
contrasting colours
and are scaled very
small (in ather
words, when the
object is suppased
to be very far away
or seen at a very
shallow angle).
When that happens
you get “moiré
interference’ - that nipply effect you sometimes
get on telly when someone's wearing something
with very fine stripes. (The name comes from a
watered design effect they use on slk and other
fabrics, by the way.)

To avod this problem, the N&4 allows
designers to store a number of different versions
of each texture, and it decides for itself which
version to be used based on the distance from the
camera or the angle of view. The designers ai
DMA working on Sificon Valley, for instance, use
a set of six versions of each texture at definitions
of 32432 pixels, 16x16, Bx8_.. and so on to 1x1.
They're designed, stored, and labelled, and the
W64 just has to choose which one o use to give
YOU the best possible effect.

Mip-mapping allows Goemon here to fook clearly
at things both close up and a fong way away.

And there's more

And that's not all. The N64 can decide how many
of an object’s polygons to show (load
management'), allowing far-distant objects to be
drawn very small and preventing them from
suddenly popping up into view as soon as the
machine is capable of drawing them at a
reasonable size. It can decide not to bather to
draw polygons that are out of the camera’s line of
sight (the backs of objects, for instance) to reduce
the amount of work it has to do and so keep
things moving quickly and smoothly (‘depth
buffering”). It can handle reflections, it can map
textures onto 30 objedts, it can do that Gouraud
shading thing which can
make flat polygons
appear to be curved
(doing away with all the
tedious maths that would
be needed to move
curved surfaces around)
and it can create fog.

Mone of that is
exceptionally wonderful -
people have been doing
all that in PC games for
ages. What's wonderful is
that the N64 can handle
all that for itself - it's
built into the hardware,
PC games can do all
thase things, but only in
the software, and every little tiny effect has to be
handled by the increasingly-knackered CPU. Frame
rates slow down alarmingly as you pile on the
detail until eventualty it becomes impossible to fly
your plane/drive your carfwhatever because at
two frames per second you can't see what on
earth is supposed to be going on. The N64 doesn't
suffer from that sort of problem because the
Reality Co-Processor is handling all the graphics
stuff. |t makes the designers' work easier, too: they
say to the programmers, “We want this object to
maove that way across the screen and then
disappear into the background.” And the
programmers don’t have to work out dever
algogithms to do the job, they just tell the machine,
*You heard them, do it like they said.”

V9N

NUOM ATIVNLIV SIWVYD ¥9N MOH “""SIALVYDLLSIANI

GO!
o

October 1997 m @

Nintendo64EVER | So, how do games actually work? (Article scanné dans N64 n°07 (Octobre 1997)) - page 5

t might be worth taking a few moments to remind
ourselves, in the broadest possible terms, what
digital sound is all about. Sound travels through the
air as waves - small, rapid fluctuations in air
pressure. But you knew that. Analogue recording captures
these rapid fluctuations and tums them into an electrical
signal whose voltage varies with time. It's as if the
electrical signal were an image of the sound wave, with the
infinitely variable voltage rising and falling over time in the
same way as the air pressure, Once you've tumed the
sound into a signal like that it can be recorded,
manipulated, or just re-directed to loudspeakers.
Digital recarding, on the other hand, involves
taking regular, frequent snapshots of the signal
and saving each snapshet as a number. What you
get is a series of electrical pulses (hence Pulse
Code Modulation, or PCM) that glve a picture of
the way the signal changes over time, which can
be used to replay the sound {after some suitable
manipulation and filtering, natch).

The level of the signal at the moment
of the sample is recorded as a number (this is
called ‘gquantisation’, jargon fans). Obviously, the
mare numbers you've got to choose from, the
mare precisely you can record the
level, which is where the notion

of more bits = higher quality

comes in. If you use an B-bit
binary number to record the signal
you've only got a choice of 256 possible divisions, and the
results will sound a bit crap. Any sample whose level falls
between two numbers will be rounded to the nearest one
and you get ‘quantisation emor’. To minimise the
unpleasantness you can increase the width of the bit field,
and the N64, like CDs, uses a 16-bit system giving 65,536
divisions. It sounds sufficiently like Real Life as to be
indistinguishable by mere human ears.

Obviously, if you can record sound digitally you can
synthesize it as well, and the sound and music designers use
a combination of the two to produce both the spot effects
and the music for N64 games. The music world has been
using MIDI (Musical Instrument Digital interface) for years.
It's a way of recording and communicating everything about
a musical performance except the actual sound, which is
reproduced by a synthesizer, This means you can write &
piece of music and define everything about its performance
- the length and pitch of every note, as well as some clever
effects — and give it to someone else to perform on their
synthesizer. There's much less data to be stored than with a
sound recording, and it can be edited and performed any
way you choose, using any instrument sound you synth is
capable of making.

So, the kit inside the N64 processes digitally recorded

Let the music play

Games need to assault your ears as well as your eyes,
as anyone who's even been asked to turn down Turok
will attest. But without a CD or a tape recorder or
anything, where do N64 noises come from?

sounds as well as synthesising wave forms 1o be played by
MIDI-type data, and that's where they get all those great
beeps, thumps, tunes and whistles,

At DMA they use the same sort of 'real’ musical
instruments you'd find in a recording studio. A computer
running a program called Emagic Notator Logic is connected
through a MIDI interface to a Peavey SP synth which has
been programmed to emulate the N&4. In this way the score
can be composed and played by real musicians {and not the

number af
e squiggly up and
uiti-hparted monster

connected to an electra G
tane-deaf programmers responsible for many of the *dassic’
game tunes of old). Sound effects are played from a 200-
disc CD changer (try getting one of them into the boot of a
BMIVY) containing FX CDs from the likes of Twentieth
Century Fox and Hanna-Barbera.

When they've got the sounds they want, everything is
digitally transferred through a Turtle Beach Pinnacle sound
card onlo & Pentium PC running more sound manipulation
software, this time Sound Forge. The sound track i
modified, mixed, re-sampled, converted and generally
mucked about with until they have exactly what they want.
And then they put it in the game. Simple

One of the N&4's more exciting features is that it's
actually capable of ‘creating’ music as it goes along. No-one
has made use of this ttle trick yet, but it should be possible
to get some interesting and unique soundtracks for games
that are, for example, entirely dependent upon the way
you're playing the game, Or the time of day. Or anything.
Fascinating stuff

NG

Nintendo64EVER | So, how do games actually work? (Article scanné dans N64 n°07 (Octobre 1997)) - page 6

ol

Making it all work

So the graphics are all designed and the music sounds
fantastic. What's they need now is to be turned into a
game, with controls, explosions, scoring and a plot.

It's time to call in the Programmers.

little history for you. The first

complete computer program was

written by Ada Byron, Countess of

Lovelace {and daughter of Lord
Byron, the famous poet and wearer of shirts with
big sleeves), in 1835. She wrote it on punch
cards, and it would have run on Charles
Babbage's Analytical Machine if only he'd been
able to build it.

Since then (1835 - we can't get over that)
there have been many computers, and many
means of programming them. Things took
something of a backward step during the 1240s
when the first electronic computers were built,
and the idea of putting programs on punch cards
was replaced briefly by the need to switch
switches and re-plug plugboards, but it soon
settled down and programmers retumned to the
lovely and entertaining task of writing down all
the 15 and 0s that computers feed on. Machine
code programming was borm.

Assembly language (using difficult-to-
remember mnemonics and abbreviations for
machine code instructions which are then
*assembled” into machine code) isn't much better,
and it wasn't until the late 1950s that the first of
the high level languages came into use.
Languages like FORTRAN, COBOL and ALGOL
used (use, indeed) English words and phrases to
Build their instructions. When the program is
complete it's ‘compiled’ inte machine code, and
the computer attermpts to run it. They're easier to
use because they can be more easily understood
by real people and don't require an intimate
knowledge of the workings of computers. Over
the years a number of high level languages have
been developed and each has found a use in some
branch of computing. (Except Pascal, which was
taught to engineering students as a cruel joke -
ghahaha, how we laughed.)

Of them all, a surpeising survivor is C.
Surprising, not only because it has survived as the
dominant programming language of the
microcomputer since its invention in the early
1970s but also because its designer, Dennis
Ritchie, chose to give it such an appallingly

uncharismatic name. It’s called C because its
predecessor was called B. Splendidly imaginative.
{Some genuine imagination was called into play
when its own successor was named, though: that's
called C++. It's not much more exciting, but it was
at least unexpected.)

The Internet's on-line dictionary of hackers’
jargon (there's a mirror at
hittp://beast.ccemory.edu/Jargon30/JARGON, HT
ML, but there are others) has this to say: “Cis
often described, with a mixture of fondness and
disdain varying according to the speaker, as ‘a
language that combines all the elegance and
power of assembly language with all the
readability and maintainability of assembly
language’.” Anather reason to wonder why it has
survived as long as it has.

Still, survive it has, and the programmers at
DMA use it exclusively. They say, "We use C for
all pur programming basically because of speed. C
compilers these days can optimise code amazingly
well, making the code almost as fast as if it were
written in pure assembler. We could, of course,
write our game in assembler, but then it wouldn't
be released until 20107 C might be hell, but
when it's compiled into machine code it's neat and
clean without too many redundant or inefficient
lumps of code to slow things down.

Code can be compiled and tested on the N64
emulators in the same way as the graphics, and if
it works there are parties and rejoicing all over the
land. Probably.

A bit of Silicon Valley

And what does C code actually look like? Here's some code they
prepared earlier (again from Silicon Valley, of course - somy it's a

bit scrunched up) to give you a briel flavour:

It's important, should there ever be a need to debug or upgrade the
code {or even rip it off for another game), that people shouldn't have
to read through the whole thing working out what every line does
50, as you can see, at least half of the work is in writing the
comments (the lines starting with //) to describe what each
command does. But as they say, “If you can't understand it then

we're not doing our job properly.”

FHEEEEREREE LI LER RN
FHHPEEEEEEEEEE R EEELRRRES
FHEEREEEEEE

// HAME : pl_UpdateDeath()
f/ PURPOSE : Checks if
player is dead. If so
sets up appropriate vars.
f/ RETURNS : Nothing.

// PARAMETERS : Mothing.
FLEEEEEREEL R ERRREREER LS
FHEFREEREERERRIEREER AL LSS
HHEEREEREEEEEY

vold pl_UpdareDeath| wvold
)

if (gePlayerInfc.Dead
== PL_DEATH_COUNTER &&
{ |gPlayerIsDead))

i

wp_StartWipe (WP_TYPE_FADE_
QFF)
1

{/ Has Flayer been
doad for walt amount 7
if (gaPlayerInfo.Dead
== PL_DENTH_F.
k& [!gPlayerIsDead))
{
// Ahh, loose a life.
gePlayerInfo,Lives—;
1

/i Update Lives info,

if
{ (gePlayerInfc, Dead>
FL_DEATH _FADE _COUNTER] &&
(wa_WipeFinished(}})

i

/i Tell game to reset
BNOTTY .
gPlayerIsDead=TRUE;

/i Set last level to
stupid val so we load a
new level.

glastLevel=59;

3
:
:
0
3
y 4
g
0
:
>
d
2
<
:
:

/{ Flayer is no longer
g:-!h‘yumfu,hld-ﬂ;

// Fade our music out

SetSeqpFading (2, 6,
20, 0);

SetSeqpPading (3, &,
20, 0)¢

1

// Game Owver 7

if
[gaPlayerInfo.Lives==0)

[

gameAction=0A_GAME_OVER;
gHextWave = TITLEWAVE;

gStartlevelsgaPlayerinfo.L
aval;

}
1

GOl
co!

October 1997 m @

Nintendo64EVER | So, how do games actually work? (Article scanné dans N64 n°07 (Octobre 1997)) - page 7

"
Bl

Building Worlds

So that's the graphics done, and the sound, and
they're working together as a game. But wait!
We've completely forgotten to design a world in
which the action can take place. Quick...

hile all that sound track and designing sound
exciternent with effects. There's a programming team
computers and working to tie the graphics and the
expensive sound together inside the game
software is going on elsewhere concept, making sure baddies

in the building, the game's
levels are designed in a sleepy
comer, tastefully appointed with
comfortable antique furniture.
And hammocks, High
Technology has been sent out to
buy some biscuits, and a
pleasing calmness descends
upon the creative process.
HB pencils and large
sheets of clean, white
paper are placed upon
desks and the game

behave in the right way. that the
right things happen when the player
is shot/bitten/belayed about the
head and neck with heavy blaws
from a wooden club. But even then,
even when everything seems to
have been done, the individual levels
still have o be designed. And they
do it on paper.

Wedl, they do it on paper at
first, but when they're sure the
paper model works High Technology
is summoned back from its shopping
levels are designed trip and they call upon the mighty
WITHOUT THE AID OF power of SVEN. SVEN s a two-

COMPUTERS. It's metre tall Norwegian timber

astounding in this day /A * .-r'-h'l;--'-" b -ﬂ"*{:;f_:"'::i;::f' "-'=I'_:'”$'r"‘*' laminator with biceps the size of
. L uher gi SVEN doesa't cam . ' ¥
and age that anything Nrequires & Super-chaeged Oslo airport, who... No, wait, that's

at all, never mind the ROl OF ¥ e Uii 00 i a5 el not right. SVEN s a game editing
design of samething as program that runs on Silicon
complex as a computer game, could be achieved Graphics computers. Yes, that's more like it.

in so rudimentary a method as drawing it on a Assuming that everything etee i working more or less
sheet of paper (with a pencil, for okay, SVEN can be used to build landscapes, place objects

goodness' sake), and set up baddies for entire levels. Once all that's done it
Still, as they say. “If a level can generate the level and put it onto the game for
can't be played through on immediate testing in one of those ever-useful N&4
paper then it won't play through in emulators. Any changes needed? No need to strip out the
the game,” so a great deal of time and effort can be code and re-program the level, just change the
saved from the outset merely by not trying to create parameters in SVEN and have anather go, It is, the boys
levels that have no chance whatsoever of working at DMA say, a monster package, and it allows them to
S0, you've got a game concepl - a main idea for change almost every setting in the game from the
everything to hang on. You've got designers working on comfort and familianity of a nice graphical interface
landscapes, objects and characters (or animals, or without having to get their hands dirty over and over

monsters, or whatever). The musicians are composing a again with all that tedious computer code nonsense,

LT L A i IS thﬂt itr then?

Mare or less, yes. Creating N64 games is a skilled and complex business, and one which involves a distressingly large
amount of capital kit. In the early days of computer games, any kid with a £99 Spectrum could write a best-selling
game. And many did. As time wore on, home machines became mare expensive, but it was still within the average
punter's financial power to buy a computer and a programming language and have a go for themselves. Things became
more difficult as the 16-bit consoles took hold, but still all you really need to create SNES or Mega Drive games is 2
decent PC and an emulator,

And now? To even begin to work on an N64 game you need: at least one Silicon Graphics computer; Ne4 emulation
software; 30 modelling software and at least one image manipulation package; sound manipulation software, MIDI
authoring software, synthesizers and a huge library of effects CDs; level designing software; a copy of C (with a
manual); and as many talented designers, musicians and programmers as you can find. And all that before you can even
begin to think about the actual game.

The video games industry isn't just a hobby for nerds any more, it's an expensive business. People bemoan the
dwindling numbers of independent games developers producing exciting and innovative games in their spare time, but
it's the price we pay for technical wonderfulness. Luckily, the more successful of the established independents,
companies (DMA Design and Rare, for example) have got the capital to invest in the tools and people they need to get
into M64 development. From people like this, we can expect to see games designed by people who care about games,
rather than games designed by people wha want to ride the gravy train and imagine that pretty pictures will be enough.

Let's hope it works out that way, eh?
4
6%

s NI

Nintendo64EVER | So, how do games actually work? (Article scanné dans N64 n°07 (Octobre 1997)) - page 8

